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Scientific Measurements

Quantities, Units, and Prefixes

H. Graden Kirksey

This is the first in a series of articles on scientific measurements. It lists the fundamental

quantities used in scientific measurements and their standard units, introduces derived quantities,

denotes some prefixes used to express multiples of units, and shows how to manipulate these unit

prefixes. Other topics related to scientific measurements will follow in subsequent articles.

Fundamental Quantities

The International System of Units (from French Système International d’Unités and

abbreviated SI) establishes the fundamental quantities measured in scientific work. The SI

system replaced the metric system about 1960. There are seven fundamental quantities, which

are shown below followed in parenthesis by the standard unit and its abbreviation for each

quantity.

length (meter, m) electric current (ampere, A),

mass (kilogram, kg) amount of substance (mole, mol),

time (second, s) luminous intensity (candela, cd).

temperature (kelvin, K)

Students often use the four quantities in the first column. Notice that the abbreviation for the

“kelvin” and “ampere,” “K” and “A” respectively, are capital letters. This is because these two

units are named after persons, Lord William Thomson Kelvin and André-Marie Ampère. You

may have noticed that many thermometers are labeled using the celsius scale and not the kelvin

scale. Not all people use only the “accepted standard” but continue to use the older celsius scale

because they “are used to it.”

All scientific measurements are comparisons of the magnitude of an unknown property, such

as length, volume, or force, to the appropriate standard unit listed in the table.

Derived Quantities and their Units

Why are these seven called fundamental quantities? Quantities in addition to these seven may

be used as comparisons for measurements, but all additional quantities are derived through some

combination of these seven fundamental quantities. Quantities obtained by combining

fundamental quantities are called derived quantities.

Volume is a derived quantity. Every volume can be expressed as the product of three lengths.

Suppose that you use a meter stick to measure the volume of a room. If the room is a

parallelogram, its volume is measured by measuring its width, depth, and height. The measured

volume is found by calculating the product of these three lengths. For example, if the three

length measurements are 10.7 m, 8.1 m, and 3.0 m, the volume of the room is reported as 260

m
3
. The important point to note is that the product of these three lengths has a “numerical

answer,” 260, and a “unit answer,” m
3
.
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Both the numerical answer and the unit answer are equally important. People sometimes

focus their attention only on multiplying numbers to obtain the correct “numerical answer.” They

overlook performing the same operation(s) on the measured units in order to obtain the correct

“unit answer.” The “unit answer” tells the reader the fundamental quantities used to make the

measured comparison. In this case, m  m  m equals m
3
. The unit answer for the product is

“meters cubed” or “cubic meters” whichever you prefer. Stating the derived unit as a length

cubed clearly tells the reader that a measurement of volume is being reported.

This is likely to be confusing for some people because familiar units for volume, such as

quart, gallon, and fluid ounce, have nothing in their names that suggest that they are “standing

for a length cubed.” This is true; these names were assigned to these volumes long before the SI

system was adopted. Nevertheless, there exists, for example, a length that when cubed equals the

volume of a quart, but this length is not related to any standard unit used in scientific work.

Density is another derived property. It is measured by dividing a sample’s measured mass by

its measured volume. Hence, its “unit answer” is kg per m
3
, which is the fundamental unit of

mass divided by the derived unit of volume.

Six familiar derived quantities and their derived units expressed as a combination of

fundamental quantities are listed in the following table.

Derived Quantity Derived SI Unit Name Symbol

Volume m
3

none none

Density kg m
-3

none none

Force kg m s
-2

newton N

Energy kg m
2
 s

-2
joule J (or N m)

Pressure kg m
-1

 s
-2

pascal Pa (or N m
-2

)

Power kg m
2
 s

-3
watt W (or J s

-1
)

You can observe in this table that the derived units for volume and density have no assigned

names. Hence, one may only say, for example, that the volume of gas in the sample is “zero

point zero one six cubic meter” and write 0.016 m
3
. But when reporting a force one might say

that the same force is either “six point seven eight kilogram meter per second squared” or “six

point seven eight newtons” and write 6.78 kg m s
-2

 or 6.78 N.

Note that the unit for force is written kg m s
-2

. A single line can be used for this derived unit

because the unit second, s, has a “negative 2” exponent. If this term had appeared in the

denominator, both a “positive two” exponent and two lines would be needed to write this unit.

Often negative exponents are employed when writing units on printed pages in order to avoid

having to use two lines to print the unit. The derived units displayed in the table above are shown

below written on both one and two lines.
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If both 6.78 kg m s
-2

 and 6.78 N are correct, does it make any difference which unit is used?

It does. Use “newton” only if you and your audience understand that “newton” means kg m s
-2

.

You can see that names have been assigned to the derived units for force (newton), energy

(joule), pressure (pascal), and power (watt). This was likely done for two reasons. First, people

find it easier to say “newton” than to say “kilogram meter per second squared.” Also, naming

this unit a “newton” honors Isaac Newton as other named units honor James Prescott Joule,

Blaise Pascal, and James Watt. You can also see that the name of the unit is not capitalized, but

its symbol (N, J, Pa, or W) is capitalized. But, there is a downside to this. Simply memorizing a

new word and how to spell it does not indicate that you understand its meaning. Shun memory

work; seek understanding.

Unit Prefixes

Sometimes the property measured is much smaller or larger than the standard unit, which

makes reporting the measurement cumbersome. For example, the measured thickness of a sheet

of paper is 0.00007 m and the distance from Chicago to Denver is 1,600,000 m. The standard

unit for length, meter, is used for both these measurements, but it is too large a unit for one and

too small a unit for the other. This situation occurs often when making and reporting scientific

measurements. The situation is made much better by employing scientific notation to express the

measured quantity. Employing scientific notation for the two measurements above:

0.00007 m becomes 7 x 10
-5

 m, and

1,600,000 m becomes 1.6 x 10
+6

 m.

Doing this makes it easier to record and read these two measurements without error, but it is

still cumbersome to write and read the “power of ten” term in the numerical part of each of these

measurements. How can this “power of ten” term be eliminated? A step in the right direction

would be to assign names to several “power of ten” terms and place that name as a prefix before

the unit. A table of often-used “power of ten” prefixes appears below.

Power of Ten Term Prefix Name Prefix Symbol

10
-12

pico p

10
-9

nano n

10
-6

micro μ

10
-3

milli m

10
-2

centi c

10
-1

deci d

10
+3

kilo k

10
+6

mega M

10
+9

giga G

10
+12

tera T

By use of two prefixes in this table, these two measurements may now be written as:

0.00007 m = 7 x 10
-5

 m = 7 x 10
-2

 x 10
-3

 m = 7 x 10
-2

 mm or 0.07 mm, and

1,600,000 m = 1.6 x 10
+3

 x 10
+3

 m = 1.6 x 10
+3

 km = 1.6 Mm.
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These measurements are read “zero point zero seven millimeters” and “one point six times ten to

the three kilometers” or “one point six megameters.”

One can see in the table of prefixes that Roman letters are employed for all symbols except

micro (10
-6

), which employs the Greek letter “mu” (μ). Also, all exponential notations equal to

mega (10
+6

) and greater are abbreviated by use of capital letters and those less than mega by

lower case letters. Deka, 10
+1

, is the only prefix that is abbreviated by use of two letters, da, but

it does not appear in the above table.

You may have noticed that most of the “powers of ten” prefixes are multiples of a thousand,

10
3
. Hence, not every measurement can be expressed as a number between one and ten

accompanied by the use of a “power of ten” prefix. You can see that this is true by considering

the two measurements of length mentioned previously. One, 1.6 Mm (megameters), is expressed

as a number between one and ten plus a unit having a “power of ten” prefix. But the thickness of

the sheet of paper cannot be reported as a number between one and ten plus a unit having a

“power of ten” prefix. It must be written as either 0.07 mm or 70 μm. There is no “power of ten”

name for 10
-5

, which would allow it to be expressed as a number between one and ten plus a unit

having a “power of ten” prefix standing for 10
-5

.

Manipulating Unit Prefixes

The prefixes before units stand for “power of ten” terms. A kilometer, km, is 10
+3

 meter or

one thousand meters. These prefixes placed before the standard unit of meter change it to a

“multiple of that unit,” a thousand times larger (km), a million times larger (Mm), or a billion

times larger (Gm). You can even make them smaller. A tenth of a meter (dm), a hundredth of a

meter (cm), or a thousandth of a meter (mm), etc. How do we manipulate these unit prefixes to

our advantage?

For example, let’s consider a density measurement. Ada reported that the density of iron is

7.8 x 10
+3

 kg m
-3

. She used the standard units for the fundamental quantities, but the answer

given in her textbook is 7.8 g cm
-3

. Does Ada’s measurement agree with the value in the book?

Before we go further, let’s get a feeling for the magnitude of a mass of 7.8 x 10
+3

 kg. The

mass of a newborn baby is about 3 kg. A teenager’s mass is about 65 kg. And the fellow that

centered the ball at the last Superbowl has a mass of about 130 kg. So, 7.8 x 10
+3

 kg is not a

mass that a person can pick up. It is greater than that of an automobile!

How big is a cubic meter?  It is a cube one meter on each edge, which is about the size of a

washing machine. That is a big volume. So, it’s hard to say if Ada’s measurement agrees with

the density of iron reported in her textbook without manipulating the prefixes. Let’s do it.

To manipulate prefixes, use what you have learned from the tables above and always

multiply by one so that the magnitude of the measurement remains unchanged. One is any value

“over itself.”  So, 5/5 = 1, and w/w = 1, and /  = 1. Next, remember that if anything is

multiplied by one, its magnitude does not change. For example, xyz  (5/5)  (w/w)  ( / )  1 =

xyz. It is that simple!  Anything, such as “xyz,” multiplied by “1” numerous times results in a

product equal to its initial value, “xyz”!

By use of this information, we can show if Ada and the textbook agree. We shall manipulate

Ada’s density unit, kg m
-3

, in order to change it to g cm
-3

. This is accomplished in the

manipulation expression shown below.
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Good, Ada’s reported measurement, on the left, agrees with the one shown on the right,

which is the unit for density used in the book.

Several points should be emphasized about the manipulation of units, which has been shown

above and applies to all unit manipulations.

1. Begin every unit manipulation by noting the initial unit (kg m
-3

 above) and the final unit

that you want to manipulate the initial unit to become (g cm
-3

 above). Comparing these

two units gives the clue to what needs to be done to accomplish a successful

manipulation. We see by comparing these two units that we shall have to eliminate the

“kilo prefix” before the gram in the unit employed by Ada and insert a “centi cubed”

prefix before the meter cubed in its denominator. We have now identified the two

manipulation jobs that we want to accomplish.

2. Second, we shall need two well-chosen “ones” to accomplish these two jobs. One to

eliminate the “kilo prefix” and the second to insert the “centi cubed” prefix. We chose the

first well-chosen “one” so that a “k” appears in its denominator in order to eliminate (or

cancel) the “k” in the numerator of the unit employed by Ada. (Remember, k/k is “one,”

so both these “ks” are eliminated.)  The well-chosen “one” that accomplishes this

manipulation is enclosed in the first parenthesis on the left in the above manipulation

expression.

The second well-chosen “one” should have a “c
3
” in the denominator so that it can be

combined with Ada’s volume unit of m
3
. This manipulates the volume unit from m

3
 to

cm
3
. The well-chosen “one” to accomplish this manipulation, (10

-2
/c), is enclosed in the

second parenthesis in the manipulation expression. But we need a c
3
 in the denominator

and not just a “c,” so we cube this well-chosen “one” in order to manipulate it to obtain

what is needed to accomplish the job. Sure, we can cube it, square it, or raise it to any

power without changing its value because it equals one. See, well-chosen “ones” are

valuable.

3. The last point is a warning. Units that have prefixes are sometimes raised to powers. Two

examples are the derived units for area, cm
2
, and volume, cm

3
. Be sure to understand and

remember that the prefix is also raised to that power. The volume unit is not written as

c
3
m

3
, but that is what cm

3
 means. Put another way, cm

3
 means that a centimeter (cm or

0.01 m) is cubed to obtain cm
3
 or 10

-6
 m

3
. This is not the same as centi (one hundredth)

of a cubic meter, 10
-2

 m
3
.
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